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Inversion of picture operators
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Abstract: Inversion of operators on pictures is shown to be an important part of classical image restoration techniques. A
method is presented for nonlinear inversion of operators that enables nonlinear restoration. The problem of out of range values
is handled by introducing a new definition for operations on pictures such that the set of all pictures is a vector space. It is
empiricalty shown that the Conjugate Gradients algorithm converges quickly in this vector space and enables inversion of
operators on big pictures with relatively little computation. Examples are given for applications of this method to linear and

nonlinear operators.
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1. Introduction

In image restoration, given a blurred picture and
a model of the blurring process, the original (pre-
blurred) picture is sought. Since digital images are
represented by matrices, the blurring process can
be regarded as an operator on matrices. The de-
blurring problem can be formulated as:
Find a picture x such that

Sy +n=y )

where y is the observed blurred picture, n is
stochastic -additive noise, and f is the blurring
operator.

We assume that the signal x and the noise n are
independent.

The error criterion which is usually applied for
solving (1) is

el =E{|x~%|%} ®)

where X is the estimated solution, x the exact solu-
tion, and E the expectation operator over all x, n, y
of equation (1).

This research has been supported by a grant from the Israel
Academy of Sciences.

The exact solution that appears in the definition
of el is the picture x which satisfies equation (1)
when n=0, i.e. a solution of an equation of the
type

JSx)=y. 3)

We will show that when f is a blurring operator,
and the solution x is required to be a picture, the
solution to equation (3) is nonunique. This means
that the ‘exact’ solution x in the definition of el is
ambiguous, and therefore, the error el is not well
defined. Because of the non-uniqueness, the error
criterion which corresponds to el is

el’=inf E{|x—£|?} C))

where £ is the estimated solution, E the expectation
operator, and the infimum is over all x which are
solutions to (1) with n=0.
The problem with the above definition is that a
practical method for minimizing el’is hard to find.
We suggest another error criterion:

e2=E{| f)-F|*} )

where E, f, x, are as in equations (1) and (2), and f
is the estimate for the blurred picture in the case
n=0.
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Solving equation (1) using e2 as the error criterion
has two main steps, to which we refer as Algorithm
1.

Algorithm 1.

(1) Minimize €2 to get an estimate f for f(x)
using statistical information about the noise and
f(x). (Noise cleaning.)

(2) Invert the operator f by solving

fx)=y where y=F.

Both definitions of el and e2 are very intuitive,
but they are not equivalent in general. We will
show however, that under certain assumptions on
S which are used in classical linear restoration tech-
niques, both definitions are equivalent. The equi-
valence is in the sense that a solution which
minimizes one of them minimizes the other. Estab-
lishing the equivalence conditions between el and
e2 will be done in Section 2. In Section 3 we show
that even for simple linear blurring operators, the
solution of equation (1) is nonunique. This means
that el cannot be used as an error criterion;
however, e2 is still applicable. Using e2 as an error
criterion (i.e. using Algorithm 1) separates the
noise cleaning phase from the operator inversion
phase. The topic of noise cleaning will not be con-
sidered here, and the rest of the paper will deal
with the problem of nonlinear operator inversion.

2. Equivalence conditions between el and e2

In this section we show that when f is linear and
invertible, (i.e. has a unique inverse) the best solu-
tion for equation (1) using el as error criterion is
identical to the best solution using e2 as error
criterion. In practice, one cannot usually find the
best solution, and it is common to use the best
linear solution (Wiener filter). It is shown that
under the above conditions, equivalence between
el and e2 also holds for the linear case.

2.1. The nonlinear case

Lemma 1. The best (nonlinear) approximation for
x in the equation

S +n=y
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where n is a stochastic noise and x,y matrices,
under the error criterion el is

%=E{x|y}.

Lemma 2. The best (nonlinear) approximation for
fin the equation

Sf+n=y

where n is a stochastic noise and f,y matrices,
under the error criterion e2 is

F=E{f|y}.

Both lemmas are results of a general theorem in
nonlinear approximation theory [1]. We give here
a direct proof for Lemma 1, to show its in-
dependence of any characteristics of f.

Proof of Lemma 1. Denote the approximate solu-
tion by %. It is a function of y, i.e.:

X=g(»);
X minimizes el:

el =E{|x-2]*} =E{|x—g(»[*}

= S |x—g(»)[*pCx, y) dx dy
xy

= S |x—g(»)[2pCx| y)p(¥) dx dy
xy

=S p(y)H |x—g(»)|*px|») dX] dy.
y X

Minimizing el is equivalent to minimizing the term
in brackets for every instance of y. For a fixed y,
g(») is a constant (matrix) g(y)=c.

We proceed to minimize the term in brackets:

g = c|2p(x] y) dx
=j LxI2px| ) dx

-ZS ¥ x;c;p(x|y) dx+ ItcHzS plx|y)dx
x Y

X

The minimum point is the point where the deriva-
tives with respect to c; equal O for all jj, i.e.
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2 S x;px|y) dx; =2¢; - S plx|y)dx;
Xij Xij
S xgp(x]y) dxy
Y f,px]y) dxy
and in matrix notation:
xp(x|y)dx
c= w =FE{ x! »}. |

. plx|y) dx

The proof of Lemma 2 is identical and will be
omitted.

Theorem 1. When f is linear and invertible, the
best (nonlinear) approximation according to el
and the result of the two steps of Algorithm 1 are
the same.

Proof. The best solution using el is given by
Lemma 1:
2=E{x|y} =E{/"(y-n)|»}
=E{f"' ) -/ |¥}
=E{/"' ()} —E{/(m |y}
=) -E{fT )]y}
The best solution using e2 is given by Lemma 2:
F=E{f) |y} =E{y-n|y}
=E{y} —E{n|y}
=y—E{n|y},
2=f(H=f"(y-E{n|y}
="' )~ E{n|yp
= W-E{f'm|»}. O

Notice that the special properties of f are used
only in the second step of Algorithm 1, and the
result

f=y-E{n|y}

does not depend on any property of f. Therefore,
£ can always be defined as a solution to the
equation:

f)=y—E{n|y}
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2.2. The linear case

It is known that when f is linear and invertible,
the best linear solution to equation (1) using el as
error criterion is the Wiener filter [2]. This filter is
usually implemented in the frequency domain:

| |F|?
F |F*+8,,/8

where X, Y, F, S,,,, S, are the Fourier transforms
of £¥/f,Ry, Ry R,, and R,, are the auto-
correlations of n and x.

This filter can also be obtained as the result of
Algorithm 1. To show this, the following proper-
ties from linear estimation theory are used [3]:

(a) The best linear solution f to the equation

f+n=y

where f, y matrices and # stochastic noise indepen-
dent of f, under error criterion e2 is:
o 1
1+S,,Sy

where £, Y, S, ,, Sy are the Fourier transforms of
f; ys Rnn’ Rff
(b) If
f=f*x
where * indicates the convolution operator
then
Sff: Sxx |F |2

where Ser, Sey» I are the Fourier transforms of
Rff, Rxx,.f-

Theorem 2. If f is linear and invertible then the
best linear approximation defined by el and the
result of the two steps of Algorithm 1 are the same.

Proof. It is enough to show that the two steps of
Algorithm 1 result in the Wiener filter. Using pro-

perties (a) and (b) for the first step of Algorithm 1
we get:

. FI?
F=Y

IF|*+S,,/Se:

In step 2 of Algorithm 1 we have to invert the
operator. If f=f+x then F=F- X and so:

F|?

F-X=Y———.
|F |+ S0 /S
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The Wiener filter is obtained by dividing both sides
by F. O

Notice that the use of f in the first step was only
for transferring the statistical information of S,
to Sy

When f does not have a unique inverse, (the con-
ditions of the theorem do not hold), the definition
of el is of little use. Algorithm 1, however, can still
be used. Step 1 of this algorithm can be any noise
filtering method. The rest of this paper deals main-
ly with the second step of the restoration, i.e. in-
verting operators as in equation (3).

3. Problems involved in inverting picture operators

The operator f in equation (3) may have an in-
verse operator f7L. In these cases, it seems as
though the solution to equation (3) should be
f~Y(3); however, this solution cannot always be
interpreted as a picture. (As will be seen later, f
does not usually have a unique inverse.) The dif-
ficulties in applying mathematical techniques to
solve equation (3) and ge a picture as a solution are
as follows:

(a) Nonuniqueness

If fis a blurring operator, every pixel in the pic-
ture y can be considered as a result of a weighted
average of several neighboring pixels in x. This is
also true for pixels on the boundaries of the picture
y; therefore, the size of x must be larger than the
size of y. If the boundaries of x are known in ad-
vance, ¥ can be exactly restored, but this is usually
not the case. This means that fis not 1-1 and has
no unique inverse.

(b) Out of range values. Nonlinear inversion

Digital pictures are represented in the computer
by matrices of numerical values in a specified
range [0, M]. Solving equation (3) without in-
troducing range constraints on the values of the
pixels usually results in solution values that are out
of range. Therefore, a projection back into the pic-
ture domain (i.e. having all pixels in the range
[0, M]) must be performed. However, such a pro-
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jection may destroy the solution. In other words,
if x*=f"!(y) is a solution to equation (3) and x**
is a projection of x* into the picture domain that
obeys the range constraints, then usually f(x**) #y.
Solving equation (3) with range constraints re-
quires much more computation. The simpler pro-
blem of keeping only positivity constraints has
been discussed in [4] with no satisfactory solution.
Positivity constraints have a physical meaning,
since light illumination cannot be negative. We are
forced to introduce an additional constraint due to
the way pictures are digitized and stored, having a
maximum value as well as a minimum value. By
range constraints we therefore mean that all
elements in the solution matrix x are in the range
[0, M].

If £7'(y) has out of range values, it cannot be
accepted as a solution. The problem of finding a
solution must be formulated now as a quadratic
programming problem:

Minimize | f(x) —y|? 6

where x satisfies the range constraints.

Various Numerical Analysis algorithms are
known that can be applied to this quadratic pro-
gramming problem [5]. However, they all perform
badly for relatively large pictures. In this paper we
try to handle the computational complexity of this
problem by a new method, which eliminates the
need for range constraints.

4. Pictures as elements in a vector space

A solution to the out of range values problem
was suggested by the authors in [6]. The idea is to
define operations between pictures in such a way
that the set of all pictures is a closed vector space.
Two basically different approaches were suggested.
The first was a definition of equivalence classes
among pictures based on a visual model, and the
second was a mapping of the set of pictures into
R” by means of a special mappings. A generaliza-
tion of the second method follows:

4.1. Mapping of pictures into R"

Since all finite vector spaces having the same
dimension are isomorphic, a definition of opera-
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tions between pictures is equivalent to a definition
of a one to one and onto mapping from the set of
all pictures into R”, where n is the number of
pixels. Such mappings exist, because the domain
and the range have the same cardinal number;
however, they cannot be continuous, since the
domain is compact and the range is not. The con-
tinuity of the mapping is very important, since
otherwise infinitely small errors may cause large
errors in grey levels. Continuous mappings can be
found if the domain is considered an open set. The
domain is compact because the grey levels are from
the closed interval [0, M]. In practice, grey levels
are obtained as results of measurements with finite
accuracy, where the minimum grey level value 0, as
well as the maximum grey level M, are obtained
after rounding. Assuming an error J in the mea-
surements and the rounding process, it is possible
touse g, 0<e<d for zero, and M—¢g, 0<e< ¢ for
M. Thus, the domain is an open set, and con-
tinuous mappings (homeomorphisms) can be
found.

Every homeomorphism between (0, M)" and R”
defines operations among pictures. We will charac-
terize a family of mappings which are ‘simple’,
although other mappings may still be useful for
special purposes. A great simplification is to con-
sider mappings which operate on cach coordinate
separately, i.e. a mapping

¥.0,M)—RR.
The following properties are applied to ¥:

(1) ¥ is a homeomorphism.

(2) Property (1) implies that ¥'is monotone. We
require ¥ to be monotonically increasing to ensure
that whenever one grey level is greater then an-
other, the relation will also hold after the mapping.

(3) Antisymmetry around the middle grey level
M/2, i.e. P(M/2—g)=—%¥(g). This simplifies the
computation of ¥, and, as will be shown later, will
enable a nice characterization of a negative pic-
ture.

From (1), (2), and (3) it follows that

Y(0)=— oo, Y(M/2)=0, P(M)=oo.
We introduce a new variable ¢ related to the grey
level g by

; g—Ms2

M2 M
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which satisfies —1<¢<1. The mapping ¥ written
in terms of ¢ is

®)

(g) = B(0) = ¢<g—_1‘—4@>

M2
and we have
¢:(_1’ 1)_)(_ o, OO)

@ is a homeomorphism, monotone increasing, and
antisymmetric around 0, satisfying

D(—1)=— o0, ®(0)=0, B(1) = oo.

Considering functions with Taylor expansions, the
antisymmetry around 0 implies that ¥ is odd:

D)= Y, atl.
j=0
Because @(1) = oo, there are infinitely many a;#0.
To ensure convergence for —1<¢<1, it is enough
to require that g; is a rational function of j. To
ensure the monotone increasing property, it is
enough to require that ¢;=0 for all j. The typical
graph of these functions is shown in Figure 1.

Figure 1. Graph of the & functions.

Examples. (a) ¢;=1 V/,

& . t
- 2y =
D(1) tjgo () A

We call this mapping the Log-ratio transformation.
(b) a;=(1/2j+1) Vj,

® 1 . 1+¢
&)=Y —— t¥*1=log[ — ) =2tanh~!
@ j§02j+1 Ogl t an OF
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1 e’—1 1
D (s)= =tanh %)

e+1 s

We call this mapping the Log-ratio transforma-
tion.

(c) The tangent function.

Throughout this paper we use the following con-
vention: If x is a picture, i.e. a matrix (x;) where
0<x; <M, we define ¥(x) as the mapping ¥ ap-
plied to each element of x.

4.2. A definition of operations on pictures
Let x, y be pictures, and « a scalar. We define:
x+y=¥Y (P + ()
a-x= ¥ (aPX).

Examples of these operations for the Ratio trans-
formation are given in Figure 2. The results for the
Log-ratio transformation gave very similar results.

The following properties are of interest:

1) —x=(-1)-x=¥ 1 (-¥(x)). From (7) and
(8) it follows that every pixel g is mapped to M — g,
which is the classical definition for the negative
picture.

(2) The zero picture is the picture with all grey
values equal to M/2.

(3) The sum x+ y preserves visual information
from both x and y.

(4) The multiplication, « - x, increases contrast
for a¢>1, and decreases contrast for O0<a<l1.

RS

- 2

picture B

Figure 2. Addition and multiplication in the Ratio space.

54

PATTERN RECOGNITION LETTERS

January 1987

When ¢— oo, the picture is thresholded at M/2.

An apparent disadvantage of the suggested tech-
nique is in dealing with linear operators. Many
practical operators are linear (e.g. convolution
operators). These operators are nonlinear after the
transformations; however, we will show that deal-
ing with such operators is simple, and gives very
good results in spite of the nonlinearity.

5. Numerical optimization

Using the new definition of operations among
pictures, the quadratic programming problem (6)
with constraints, can be solved without constraints,
but the functional is no more quadratic. All opera-
tions, including the norm, are performed in the
new spaces. The resulting minimization problem is:
Find a minimum to

gX)=|FX)-Y]| over all X, C)

where Y is the blurred picture, and F the blurring
operator.

Because of the high dimensionality of both X
and Y, and the nonuniqueness of the solution,
an iterative algorithm was used to determine a
solution. The numerical method used can be any
method which can be applied to nonquadratic
functionals. The Conjugate Gradients algorithm
which has already been tried in [7], proved to be
very efficient in our experiments. See Table 1.

Table 1
The Conjugate Gradients method

Minimizing the functional g

(1) Initially choose an arbitrary guess X, and set
ro=—YVe(Xy), Py=ry.

(2) Choose o to minimize @(a) = g(X, +aP,).

B) Xy 1=XptaPy; rey =—VeXy, )

e Pt

“4) b= E ‘2 3Py 1= —DPy.
k

For a quadratic g, the algorithm is known to
converge in less than # iterations, where # is the
size of X [8]. In our case, g is nonquadratic, and
n (the number of pixels), is usually very large, so
that n iterations are impractical. However, ex-
perimental results that will be described later, show
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that convergence up to a reasonable accuracy can
be achieved in a very small (constant) number of
iterations. Notice that all operations of addition,
scalar multiplication, inner product, and differen-
tiation are in the Ratio or Log-ratio spaces. The
computation of the gradient and the method for
optimization along a line are discussed in the ap-
pendix.

6. Experimental results

A series of computer simulation experiments
have been performed to investigate and evaluate
the suggested method. The points that were tested
were:

(1) The number of iterations needed for a
reasonable convergence and its dependence on the
picture size.

(2) The quality of the results compared to other
restoration techniques.

(3) Sensitivity to noise.

(4) The effect of the initial guess.

(5) Sensitivity to various kinds of blurring func-
tions. The point spread functions we tried were:

(a) Uniform motion blur simultated by giving
each pixel a directional average of its neighbors.

(b) Gaussian blur:

2 a2
h(x’y’a,ﬁ)=exp<_ x—aY+(y-8 >
B
(¢) Sinc blur:

sin((x— )/B) 2_ sin((y — ﬁ)/B)] 2
(x—a)/B } [ (y-B/B |’

(d) A single edge detection operator.

h(x, y,a,p)= [

All experiments were performed on a Vax 780
computer with a single precision floating point
arithmetic. In all cases except when otherwise
stated, the initial guess was the zero picture (i.e. a
picture with all grey levels equal M/2.) The reason
for this in connection with maximum entropy
restoration techniques will be discussed later. In
the noisy pictures, a random noise from a Gaus-
sian distribution was added and the SNR (signal to
noise ratio) was computed as the ratio between the
variance of the picture and the noise variance.
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N

o

o
I

Error per pixel
o
S,
l-b

Iterations

Figure 3. Speed of convergence for several picture sizes. A -
Picture 64 x 64, B - Picture 128 x 128, C ~ Picture 400 X 400.

We tried our restoration technique on pictures
of several sizes. The value of the error g(X) as
defined by equation (9), divided by the number of
pixels, for picture sizes of 64 x 64, 128 x 128, and
400 400, is plotted as a function of the iteration
number in Figure 3. The decrease of g(X) in the
first several iterations was very fast. Therefore, for
scaling purposes, the graph shows values starting
at the fifth iteration. The blurring in this case was
a noise free uniform motion blur of ten pixels for
the smaller pictures, and twenty for the 400 x 400
picture. As can be seen, the size of the picture
seems to have a very small effect on the conver-
gence speed, and the error per pixel is sometimes
even smaller for the bigger pictures. Some of the
iterations of the 128 x 128 picture are shown in
Figure 4. Notice that (as discussed in Section 3) the
restored picture is larger than the blurred picture.

Comparing the quality of the restored pictures
obtained by our method to the quality of restora-
tions obtained by other techniques involves some
difficulties. The difficulties are in finding a good
criterion for the comparison. The criterion we used
in our experiments was the Euclidean distance be-
tween the original and the restored picture:

d= Z,‘f (xij _yij)2
n

where y is the original picture, x, the restored pic-
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Figure 4. Restoration of a picture degraded by a noise free

uniform motion blur. A - Original picture, B - Blurred picture,

C - Initial guess, D - After § iterations, E - After 10 iterations,
F - After 20 iterations.

ture, and » the number of pixels. We refer to this
distance as the posteriori error in the restoration.
Although very simple to compute, the distance
posteriori error proved to be far from ideal. In
noisy pictures, the distance posteriori error in-
creases after several restoration iterations, although
it is obvious (by looking at the resulting pictures)
that the iterations improve the pictures.

The two other methods we compared to ours
were the Inverse Fourier Filter, where the Fourier
transform of the picture is divided by the Fourier
transform of the blurring operator, and an al-
gebraic inversion method. We tried two methods
of handling the out of range values that occur in
these methods: clipping and rescaling. Our ex-
periments show that clipping always gave better
results than rescaling. In all experiments, the
Fourier Inverse Filter gave the worst results. See
for example Figure 5. We focus therefore, on com-
paring our method with the algebraic method,
which was implemented by using the same con-
jugate gradient algorithm we used for our Ratio
and Log-ratio methods, always with the same in-
itial guess. The results for noisy pictures are given
in Figure 5 and the corresponding graphs of our
posteriori error in Figures 6 and 7. The results
show that for almost every iteration, our method
gives a smaller posteiori error, and this is more evi-
dent for the pictures with smaller values fo SNR.

56

Figure S. Restoration of noisy blur. A,B,C - Blurred picture,

SNR=1000:1, 100:1, 10:1, D,E,F - Fourier restoration of

A,B,C; G,H,I - Algebraic restoration of A,B,C; J,K,L - Log-
ratio restoration of A,B,C.

The experiments show that the Log-ratio method
performs better, even for the noise free case, for all
point spread functions checked. The results of
recovering from Gaussian blur and Sinc blur are
shown in Figure 8 and the graph comparison to the
Algebraic inversion in Figures 9 and 10.

We also tried our algorithm on a simple edge
detection operator. The operator gives each pixel
the absolute value of the difference between itself
and its left neighbor. This operator does not have
a unique inverse, and is highly nonlinear. The
number of iterations needed in this case was much
higher than the number of iterations needed when
other operators were used, and therefore, a very
small picture of 8 X 8 pixels was used. The results
are shown in Figure 11. In this case, a random pic-
ture was used as an initial guess.
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401

35

30

25

Error

0 ] | | ] ] J
0 5} 10 I3 20 25 30

Tterations

Figure 6. Posteriori errors in several iterations for SNR=
1000:1. A - Log-ratio restoration, B - Algebraic restoration.

.—-—D

100 I~ —

Error

o) ! | | 1 | J
0 5 10 15 20 25 30

Iterations

Figure 7. Posteriori errors in several iterations for SNR =100:1

and 10:1. A - Log-ratio restoration SNR =100:1, B - Algebraic

restoration SNR =100:1, C - Log-ratio restoration SNR = 10:1,
D - Algebraic restoration SNR=10:1.

7. Discussion of the results. Comparison to other
methods

The main novelty of the technique used in this
paper is the way by which our of range values are
treated. Although the range constraints include
both the positivity constraint and the maximum
value constraint, the amount of computation need-
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Figure 8. Log-ratio restoration of noise free Gaussian and Sinc

blur. A - Gaussian blurred picture. B - A restored after 20 itera-

tions. C - Sinc blurred picture. D - C restored after 20
iterations.

Error

o) L 1 ! I I J
0 5 0 15 20 25 30

Iterations

Figure 9. Posteriori errors in several iterations for Gaussian
blur. A - Log-ratio restoration, B - Algebraic restoration.

ed is similar to the amount of computation needed
by simple algebraic restoration techniques. As
reported in [4,9], quadratic optimization tech-
niques with constraints failed to give satisfactory
results for pictures of reasonable size. In our
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40~

35

30

25

Error
n
o

0 ! 1 | | | J
0 5 10 15 20 25 30

Iterations

Figure 10. Posteriori errors in several iterations for Sinc blur.
A - Log-ratio restoration, B - Algebraic restoration.

Fig. 11. Recovering a picture from its horizontal edges. A -

original 8 x 8 picture, B — After applying the edge operator, C -

Initial guess, D - Restored picture, E - Applying the edge
operator to D.

method, the constraints are eliminated, but the
functional to be minimized is nonquadratic.

The idea of a coordinate transformation was
first considered in the work of Oppenheim [10].
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His motivation was the model of light reflection
from physical bodies. Oppenheim observed that
since the reflection is a multiplicative process,
taking logarithm enables one to work in a vector
space where multiplication is reduced to addition.
Multiplicative (nonlinear) operators are thus re-
duced to linear operators, and linear techniques
can be used. Our approach is different. We use
coordinate transformation in such a way that
linear operators become nonlinear. Our approach
is not restricted to either linear or multiplicative
operators, and can be applied to any kind of
operators.

A comparison of the results presented in this
paper to other restoration techniques is com-
plicated because many techniques involve noise
filtering with inversion of the blurring operator.
As was shown in the introduction, these two steps
can be considered separately for operators that are
linear and invertible. Two of the commonly used
techniques for inversion of operators are the in-
verse Fourier filter and algebraic least squares
methods. A short comparison of these techniques
to our method is now given.

7.1. The inverse Fourier method

The inverse Fourier filter technique has some
problems that do not occur in algebraic restoration
methods. Using this method, the operator is
assumed to be a cyclic convolution operator.
Therefore, the operator is 1-1 and onto with a
unique solution which is not necessarily the right
solution. It can be shown [4,11] that this assump-
tion about general convolution operators has an
undesirable effect at least on the boundaries of the
picture, and in some cases, like the uniform
motion blur, over the whole picture. The restored
picture obtained by this method has the same size
as the blurred picture, while in algebraic methods
it is possible to get a restored picture which is
bigger than the blurred picture.

It is known that Fourier inversion is very sen-
sitive to noise. A relatively small amount of noise
causes the noise level in the restored picture to in-
crease drastically. Even after noise filtering, the
noise cannot be completely removed, and because
of the high sensitivity to noise of the inversion pro-



Volume 5, Number |

cess, the results are unsatisfactory. Inverse Fourier
restoration results almost always in out of range
values. These are usually treated by rescaling or
clipping. Our experiments show that the clipping
approach is better than rescaling, but still, with
SNR of less than 1000:1 the Fourier inversion is
unsatisfactory. From the computational aspect,
the inverse Fourier can be carried out in O(n log n)
where 7 is the total number of pixels, when the pic-
ture dimensions are powers of 2. In other cases, the
computation time may grow considerably. In this
case one cannot pad the picture with zeros to get
the right size, because this will affect the entire
restored picture. Algebraic methods like ours, take
time of O(nm) where n is the total number of pixels
and m the size of the point spread function which
is usually small.

7.2. Algebraic methods

The major difference between the method sug-
gested in this paper and other least square tech-
niques is in the handling of out of range values.
Intuitively, one can consider our method as giving
different weights to error in the restoration process
in such a way that out of range values result in in-
finite error, and therefore can never happen. The
experimental results discussed in the previous sec-
tion show that our method gave improved results
for all point spread functions and for all levels of
noise. As can be expected, the superiority of our
method becomes more evident as the noise level in-
creases, but even for noise free blur, our restora-
tion gives better results and seems to converge
faster. Although we did not try other algorithms
like the pseudo inverse method [12], it seems
reasonable that their asymptotic behavior is similar
to the Conjugate Gradients algorithm used in our
experiments (for the unconstrained restoration). It
seems to us that the inversion of the edge detection
operator described in the previous section is a very
good example to the advantage of using range con-
straints. One cannot hope to solve such a problem
without introducing such constraints.

Some restoration techniques assume a partial
knowledge about the noise statistics, usually its
variance. In these cases, even if f is invertible,
there are infinitely many possible solutions. The

PATTERN RECOGNITION LETTERS

January 1987

solution is then chosen by using an additional con-
straint, like a smoothness criterion [4] or a maxi-
mum entropy [13]. Introducing a priori knowledge
is also possible in our method, simply by choosing
an appropriate initial guess for the iterative
algorithm. Assuming the set of all solutions (in our
case, the set of all local minima) to be dense, start-
ing from an initial guess will converge to a solution
close to that initial guess. In our experiments, the
picture used for an initial guess was almost always
a picture with all grey levels equal to M/2. It is
easily seen that this is the maximum entropy pic-
ture. Therefore, the local minima obtained are
with high entropy.

8. Appendix

In this appendix we show how to implement the
Conjugate Gradient algorithm in the picture vector
space defined by a mapping ¥ as discussed in Sec-
tion 4. In the following discussion, the pictures are
given as matrices

x=(xy), i=1,...,m, j=1,..,n, 0<x;<M,

y=y, i=L..,p, j=1..,q, 0<y;<M.

Using the mapping ¥, we define a normalization
of the picture matrices:

x>¥x)=X, yo¥(y)=Y.

8.1. Computing the gradient

Since the optimization is performed in one of the
new spaces, the operator F in (9) is not f of (3), but
the corresponding operator in the new space, i.e.:

FX) = PP~ (X)) = V()
F:R™ — R,
Assuming inner product norm in (9), we have:
g0 =FX)-Y|’
[FCOI = 2F(0, Y+ Y|
(n,® (0,9

Y FQOG-2 Y (FOX0O),Y
Lj=(,1) Lj=(,1)

(29) )
+ )Y Y
Lj=@1,1)
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To compute Vg, we differentiate with respect to
Xop for arbitrary af.

0g (£.9) (X)),
—=2 ¥ (FX)) ———
0Xop  ij=(LD 0X o5

w9 aFX),
L=y Y 08Xy

@ F);
=2 oy 2
L @O0 =Yy) =R
SNy _ oy o Oy
ax, e
W)y _ S Oy
X X5
_ )y

_1 7
3x0p (P ) (Xop)-

From the above equations it follows that

IFX))y; , 0 )y
Ky Vi) (S Pop
and then
dg 2 923)]

= )

Xop  P'(Xop) i)

« Sy .
3xa/;

((FX)); = Yyp) V(S0

f is usually a local operator, and therefore, the
term 9f(x);;/dx,p is identical to O except for few
i, j. Therefore, Vg can be computed in time propor-
tional to the number of pixels. When f is a con-
volution operator, described by the convolution
matrix (a;;), 9f(x);;/9x,4 is actually the constant a;;
of the convolution matrix.

8.2. Minimization along a line

In the Conjugate Gradients algorithm, at step
(2), a minimum along a line has to be found to
&(0r) = g(X; + aPy). Any method for line mini-
mization can be used [5], but since each computa-
tion of Vg or g is very expensive, we used the
following method:

Notice that step (2), @(0)=g(X}) is known and
@'(0)=(Vg(X,), P,y can be computed by one
inner product. Select a small positive number A
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(small relative to |[Vg|), and compute P(h)=
g(X+ hP,). From the Taylor expansion

2
D(h)= D0)+ hd'(0)+ %— @”(0).

Therefore,

o7(0)~2 2= ‘15(02)/11 =08

and a first approximation to ¢* that minimizes
D(a) is

2(0)

(p//(o) *

s

This approximation is actually a one step Newton-
Raphson estimate which is exact when g is quad-
ratic, but can be very rough in some cases.

Alternatively, assuming &(¢) to be similar to a
paraboloid (it is exactly a paraboloid when g is
quadratic), we can solve for the paraboloid coeffi-
cients using the three values &(0), @'(0), and P(h),
and compute the extremum point of the resulting
paraboloid. The resulting formula is identical to
the previous formula. When a maximum rather
than a minimum is found, a* is negative. When
this rare event happens, another point (@(2%4) or
@’(h)) can be computed to find a third degree in-
terpolation.

8.3. Complexity

We consider a picture of size nXn and a con-
volution operator f on m neighbors. The Conju-
gate Gradients algorithm requires 4 n X n matrices.
An additional matrix is required for Y, and usually
another two are needed for temporary storage. The
total memory needed is therefore Tn*.

Regarding time complexity, the functions ¥ and
w~! can be computed in two multiplications each,
using a table and linear interpolation. The total
number of multiplications per iteration is then
(14+3m)n®. For example, if n=>512, m=50, it
takes approximately 43 000 000 multiplications per
iteration. Assuming 1! us per multiplication and
that other operations take about the same time as
multiplication gives running time of 86 seconds per
iteration.
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