DISTRIBUTED COMMIT WITH BOUNDED WAITING

D. Dolev

H. R. Strong

IBM Research Laboratory
San Jose, CA 95193

ABSTRACT

Two-Phase Commit and other distributed commit
protocols provide a method to commit changes
while preserving consistency in a distributed
database. These protocols can cope with various
failures occurring in the system. But in case of
failure they do not guarantee termination (of
protocol processing) within a given time:
sometimes the protocol requires waiting for a
failed processor to be returned to operation. It
happens that a straightforward use of timeouts in
a distributed system is fraught with unexpected
peril and does not provide an easy solution to
the problem. In this paper we will combine
Byzantine Agreement with Two-Phase Commit, using
observations of Lamport to provide a method to
cope with failure within a given time bound. An
extra benefit of this combination of ideas is
that it handles undetected and transient faults
as well as the more usual system or processor
down faults handled by other distributed commit
protocols.

1. INTRODUCTION

Consistently committing changes to distributed
data is an impossible task in some cases and a
very "long" process in others [Li,RSL]. The main
difficulty is the lack of a reliable mechanism
for shared knowledge or agrecment: one processor
cannot sce messages delivered to another
processor and each processor has only its message
interface to tell it about global events. Such
agrecment problems are exacerbated in the
presence of undetected or transient failures.

The various commit protocols dare designed to
preserve data consistency in the distributed
system in case of failure or delay in message
transmission, assuming the system has the ability
to recover after failure. A typical commit
protocol requires that each process wait in some
prepared to commit state until some participating
site, especially the transaction coordinator has
recovered. We will present algorithms that
overcome multiple failures and guarantee a
unanimous commit or abort among all the correctly
operating processors, subject only to certain
limits on the number of failures that can occur.
These algorithms will complete processing within
a fixed time known in advance. Thus the protocols
we present are nonblocking in the terminology of
Skeen [Sa,Sb].

CH1792-1/82/0000/0053$00.75 © 1982 IEEE

963 M O3

53

In order to guarantee speedy system recovery, one
must find a way to agree distributively on
failures and to decide on appropriate corrective
action. Using timeouts appears at first to be a
reasonable solution, but unless all the clocks
are totally synchronized and advance at exactly
the same rate, a straightforward application of
timeouts can lead to undesirable system partition
and inconsistency becausec of a lack of systemwide
agreement. For example, suppose we want to modify
a two phase commit protocol to include timeout.
Assume the transaction coordinator has received a
"prepared to commit" message from all
participants and begins to send the commit

‘message when there is a transient communication

failure. Assume that the participants will abort
the transaction unless they receive a '"commit"
message within a fixed time. If any participating
site receives the "commit" message before its
timeout, then all must. So what we need is a
broadcast protocol that guarantees that if one
participant receives the message, then not only
will all eventually receive it but they will all
receive it within time-out time. Otherwise, some
may receive the message before and some after the
timeout. But what does 'at the same time" mean
unless the clocks are synchronized exactly?

The results of Lamport [La] enable us to find
agrecment on an ordering of events but not the
complete synchronization nceded for application
of timeouts. In |[G] Garcia-Molina apparently
ignores this difficulty in his distributed
election algorithms. Lamport [Lb] suggests using
time instead of timeout to overcome this problem.
However, to agree on time one needs some sort of
Byzantine Agreement [PSL, DSb, DFFLS].

In this paper we will combine the best results on
reaching Byzantine Agreement with Lamport's [Lb]
observations to obtain a distributed commit
protocol. Our assumptions about the nature of
errors in the system will be presented in the
next section. They are based on those in [Lb] and
[G]. In general we allow detectable and
undetectable faults in sending or forwarding
messages. We allow individual clocks to differ.
We do not assume anything about the clock of a
faulty processor. Later we will discuss
trade-offs involving coping with large numbers of
arbitrary types of failures at the cost of
increasing the number of messages exchanged. o

The algorithms we describe here are more robust
and comprehensive than the other distributed
commit protocols in the literature. The
incremental costs in time, messages, or other
usual measures of complexity are surprisingly
small. Of course we cannot guarantee that our
algorithms will cope with every possible
combination of errors of every possible type,
but, given probability distributions on the
various kinds of error possible, we can tune our
protocols to achieve any desired level of
confidence that is actually achievable by
protocols for distributed commit that complete
processing within a fixed time bound.

Another nonblocking protocol was presented by
Skeen in [Sb]. The presentation is sketchy in
details but it seems to rely on a model of failure
that assumes failures shut down a processor
immediately (see Assumption 2 below) and that
there are no intermittent or transient processor
or communication link failures. For this model,
Fischer and Lamport have developed a simpler,
straightforward nonblocking protocol [FL}.
However, we believe we are presenting the first
nonblocking distributed ' commit protocol that
makes no such assumptions about the behavior of
faulty processors.

We use the term Byzantine Agreement to refer to
distributed agreement protocols that are
resilient to a bounded number of failures without
making any assumption about the behavior of
faulty components. Other algorithms for reaching
Byzantine Agreement are discussed in [DLM, Da,
Db, DR, DSc, FFL]. . These references include
several lower bound results on the time and
amount of information exchange required to
achieve Byzantine Agreement. Variations on the
type of agreement are discussed in [Da] and [La].

2. THE BASIC ASSUMPTIONS

We envision a distributed system consisting of n
processors loosely connected by a message
interface via a communication medium that can be
conveniently analyzed as a colléction of
processor to processor links. Our distributed
commit protocols will be tuned to an assumption
about the number of coincident failures of
certain types that they are intended to handle.
First we present a fairly restrictive set of
assumptions that we have adapted from those
common to the literature on distributed commit
algorithms. Then we will discuss ways to adapt
the algorithms in order to relax the assumptions.

Assumption 1 [G]: The network topology is known
to the participants in the algorithm, and correct
processors obey the algorithm.

The first assumption does not imply that the
system should remain fixed forever, but it does

S05 IBM 03

54

require that prior to applying the algorithm the
participants should agree on the set of
processors participating in the algorithm. This
assumption can be relaxed somewhat so that only
some of the processors are required to know the
complete topology.

Assumption 2 [G]: When a processor fails, it
immediately halts all processing. Thus a failure
does not cause a processor to deviate from its
algorithm and behave in an unpredictable manner.

This assumption is & very strong one. It
eliminates from consideration many difficult to
handle but usually improbable events. We have
included it because most distributed commit
protocols must make this assumption in order to
make any assurance of consistency. We will devote
a later section of the paper to its relaxation.

Assumption 3 [G]: If a processor p receives a
message M from processor q, then the message M
was sent earlier by processor q.

Here, since we make no assumption about an
absolute time frame, we must explain that we mean
"earlier" in the relativistic sense that any
observer would observe the sending of message M
happening before its receipt. In particular, if
processor p returns some acknowledgement to
message M, then that acknowledgement is received
by processor q at a time later than that at which
it sent message M according to its own clock
(provided that processor q including its clock is
operating correctly).

Assumption 3 implies that a processor cannot
impersonate another and that messages are not
spontaneously gencrated. Moreover, it implies
that the content of a message cannot be altered
by the communication medium. There are secveral

methods for justifying Assumption 3 that all fall

under the broad heading of authentication
protocols and can be tuned to supply a sufficient
amount of redundancy to provide any desired level
of confidence in the assumption. See [DSb] and
[PSL} for a discussion of these methods.

Note that we do not assume that a message sent is
necessarily received. We simply assume that if it
is received and accepted it is exactly the same
message that was sent. Communication links may
fail, but their only undetected {ailures are
complete cessations of communication. From the
point of view of a processor at one end of a
communication link, the failure of the link is
not immediately distinguishable from a failure of
the processor at the other end. In Section 3 we
will discuss how to account for communication
failures in setting the maximum number of
failures the distributed commit protocol will
handle and also how to reduce consideration of
communication link failures to a model in which
communication is perfect and only processors can
fail.

Any use of time to measure missing events is
based upon the following assumption.

Assumption 4 [Lb]: There is a § such that if
event e occurs at time T and causes processor p to
send message M to processor q and if processors p
and q and the communication link joining them are
nonfaulty, then the message arrives at processor
q by time T + § (The time is measured in both
cases by the same clock.)

We assume that the value of § is uniform for all
processors and unaffected by load or time. We
also assume that it is known in advance to each
processor. For our purposes, the event e will
typically be the receipt of another message, so
it should be noted that § includes processing
time as well as transmission time.

The main weakness of the assumption about § is
that it should not be affected by load in the
individual processors and in the communication
link. But any use of timeout depends on some
upper bound on communication time. Whenever the
load drives the communication time to exceed this
specified upper bound, the event will count as a
communication error. We will be careful in
handling those errors, sometimes allowing a
processor to change its mind after the timeout if
there is enough evidence that the missing event
did occur.

The main danger in using 8§ as a basis for a
timeout method is that clocks may drift and time
is not absolute. Thus one processor may register
a timeout while another does not. This
discrepancy is the key problem for consistency in
distributed systems. To overcome it we will need
to add some additional communication between
individual processors. As Lamport [Lb] observed,
we nced to bound the rate of relative drift
between clocks and the amount of time by which
they differ. In this way we will be able to
deduce from an individual time clock something
about global time.

Assumption 5 [Lb]: At any time, the clocks of any
two nonfaulty processors differ by at most g .

This assumption does not require absolute
synchronization, but it does require a fairly
close correspondence in times. It can be relaxed
by instead bounding the rate of drift between
clocks and by periodically running a Byzantine
Agreement on time. An & satisfying Assumption 5
can be computed from the bound on the rate of
drift and the length of the period for Byzantine
Agreement on time. Lamport and Melliar-Smith
discuss these issues in their recent paper [LM].
This assumption simplifies the relation between
individual time clocks, as the following simple
lemma shows.

a6s 1M O}

55

Lemma 1 [Lb): If processors p and q and the link
between them are nonfaulty, and if processor q
receives message M from processor p at time T on
the clock of processor q, then M was sent by
processor p at a time no earlier than T-(6 + £) on
the clock of processor p.

The lemma follows immediately from the above
assumptions. It provides a way for us to define
the phases of our algorithms for Byzantine
Agreement.,

3. BYZANTINE AGREEMENT

The assumptions of the previous section limit the
types of errors that might occur to either not
sending (or forwarding) a message required by the
protocol or to losing the synchronization with
the rest of the system specified in Assumption 5.
This limitation provides an easier setting for
reaching Byzantine Agreement than its usual
context. For example, we can use the algorithms
of [DSb] designed for use with an authentication
protocol without any extra protocol beyond that
required to satisfy Assumption 2.

Byzantine Agreement is defined in the context of
a set of processes including one called the
transmitter that is supposed to transmit some
value to the others in the presence of some
bounded amount of faulty behavior. Byzantine
Agreement is reached when:

(I) all correctly operating processes agree
on the same value, and

(IT1) if the transmitter operates correctly,
then all correctly operating processes
agree on its value.

Reaching Byzantine Agreement was expensive and
probably impractical until the discovery of
polynomial algorithms with and without
authentication [DSb], [DFFLS]. The best known
algorithm with authentication is [DSb], which
requires t+1 phases of sending information and
O(nt) messages to cope with t faults. Without
authentication the best algorithm requires 2t+3

phases and O(nt+t3

log t) bits of information
exchange [DFFLS].

As remarked before, the usual context for
Byzantine Agreement includes the assumption that
all failures are processor failures, i.e.
attributable to a processor. The upper limit t on
the number of such failures is a parameter of the
algorithm. Thus we must provide a way to account
for communication link errors as processor errors
in order to make sense of our current application

-of Byzantine Agreement. All that is required is

to provide a way to count the number of actual
errors of all types assumed possible and convert

this to some number to be compared with the
parameter t. We are not required to blame any
specific processor for a communication failure.
If the number of “errors'" we compute is no larger
than t then we can guarantee Byzantine Agreement
among all correcctly operating processors in spite
of any failures in communication links to them,
provided that they are not isolated (¢f. [SS]). A
processor isolated {rom all correctly operating
processors will be considered to be a failed
processor.

The number of equivalent processor faults is
defined to be the number of failed processors
plus the smallest number of additional processors
required to cover all communication link
failures, where one processor covers a
communication link when it is one end point or
terminal on that 1link. Our algorithms for
Byzantine Agreement are designed to handle up to
t equivalent processor faults. Later we will need
to modify the definition of a failed processor to
include those isolated from a specific subset of
the otherwise correct processors. To simplify
matters and give one operational definition, we

make our definition relative to the parameter t.
A processor will be said to have failed if it
fails to follow the algorithm or if communication
link or other failures prevent it from
communicating correctly with more than t other
processors. If a processor has not failed, it
will be said to be correct, 1i.e. operating
correctly. Note that in spite of Assumption 2,

the second type of failure is mnot always
detectable by the processor. Later, associated
with Algorithm 3, we will give an operational

definitjon of failure that can be
otherwise correctly operating
determine when it has lost the connectivity
required for agreement.

The following algorithm is an example adapted
from [DSb] to meet our current assumptions. It is
designed to handle a single equivalent processor
fault (g.e. t=1). Note that this is more powerful
than handling any single failure but not more
powerful than handling any pair of failures.

Since in our distributed commit application we
are only interecsted in- agreeing on whether a
particular cvent occurred (e.g. the issuance of
the "“commit" message by the transaction
coordinator or a change in the configuration), we
will describe Byzantine Agreement with respect to
a paradigmatic event called the "GO" event. In
this context Byzantine Agreement is reached when:

(I') all correctly operating processes agree
§ P)4
whether or not the "GO" event occurred,
and

(II') if the transmitter operates correctly,
then all correctly operating processes
agree on "GO" if and only if it was
sent by the transmitter.

CTE S FEA TS

used by an’
processor to’

56

BYZANTINE AGREEMENT COPING WITH SINGLE EQUIVALENT
PROCESSOR FAULT:

If a processor receives a message directly from
the transmitter, it cannot know that all other
processors received that message. Our algorithm
will arrange that if the message is received via
a backup processor specifically chosen to be &
relay processor then it can be assumed that all
processors will eventually receive the message.
Let the transmitter be s and let two other
processors a and b be chosen to be backups for s.
We will refer to a and b as the active processors.
All processors other than a, b, and s will be
called passive processors. The algorithm is
presented by rules of correct operation for each
type of processor. Note here that a processor
must be presumed failed and no longer operating
correctly if it is isolated by communication link
failures from both active processors. To simplify
the statement of the algorithm, we assume that
whenever a processor sends a message to another
it also sends that message to itself. Let t be & +
e from the assumptions. We naturally assume that
if a processor receives a message from itself, it
receives it at a time no later than § after the
time at which it was sent.

Algorithm 1

Transmitter: To send GO the transmitter sends to
the two active processors the message

. GO, the time is T,
where T is the time on its clock.

Active processors: On receipt of
<GO, the time is T>,
from the transmitter at time T' with T' £ T + 1,
send to every processor the message
<The transmitter sent '"'GO" at time T>.

All processors: On receipt of

<The transmitter sent ""GO" at time T>,
from an active processor at time T" with T" S T +
21, decide that the event "GO" did indeed occur.

Theorem 1: Following Algorithm 1 the system
reaches Byzantine Agreement on the event "GO"
when no more than one equivalent processor fault
ocecurs.

Outline of proof:

If the transmitter correctly sends "GO, the time
is T" to all active processors and there is no
more than one equivalent processor fault during
the entire process, then all correctly operating
processors will have received "the transmitter
sent 'GO' at T" from at least one active
processor by time T+2t . If any processor
receives '"the transmitter sent 'GO' at T from an
active processor before time T+21, then some

¢ w

active processor must have sent the message and
by Assumption 2 it must have rcceived "GO, the
time is T" from the transmitter before time T + 1

An exhaustive analysis of the possibilities for
one cquivalent processor fault shows that in this
case each correctly operating processor must
receive "the transmitter sent 'GO' at time T
before time T+2t as measured on its clock. Thus
if by time T+2t a correctly operating processor
has not received an appropriate message from
either active processor, it can conclude that the
event had not occurred by time T and that all
other correctly operating processors will be in
agreement on this fact within & as measured on
its clock. O

The above algorithm is fairly simple and the
number of messages exchanged is about 2n, where n
is the total number of processors. Algorithm 1
ensures that within time 2t a decision about the
critical event will be achieved. In the next
section we will show how to use Algorithm 1 to
obtain a distributed commit protocol with a fixed
time bound. Later we will generalize Algorithm 1
to cope with any given number of equivalent
processor faults with the required number of
messages only proportional to the number of
faults handled.

4. DISTRIBUTED COMMIT PROTOCOL

Our distributed commit protocol uses Algorithm 1
twice: once for "prepare to commit" and once for
"commit." If the "commit" event does not occur in
time, then all correct processors will decide to
abort the transaction in question.

Algorithm 2

1. Using algorithm 1, the transaction coordinator
broadcasts ''prepare to commit" (as a "GO" event
at time T) to all the participating processors.

2. After deciding that the event ‘'prepare to
commit' has occurred, every processor that is
recady to commit sends the message ''ready to
commit” to the transaction coordinator. Those
preferving to abort need send nothing.

3. If by time T+31 the transaction coordinator
has received "ready to commit" from all the
participants, then it broadcasts the ‘'commit",

using Algorithm 1.
4. If by time T+5t on its clock a processor has
not decided to commit then it decides to abort.

After the event 'prepare to commit" each
processor has the time T required in the rest of
the algorithm. Some improvement is possible by
vunning Algorithm 1 on an "abort" event as well
as on the "commit" event, but the performance in
the worst case will be the same,

wes v 03

57

reaching
operating

concerned with
the correctly
have defined '"correctly
operating" in such a way that, in spite of
Assumption 2, a processor may continue in
operation unaware that it is regarded by the
system as a whole as having failed (because of
transient communication link failures). This
situation can present difficulties when we want

So far we have been
agreement among

processors and we

to reintegrate a failed processor into the
system. Byzantine Agreement algorithms can be
used to detect and reintegrate such failed
systems, but these applications are beyond the
scope of the present paper. Here we will add an
assumption in the spirit of Assumption 2 and
recognize that when we relax either this
assumption or Assumption 2 we may admit the

possibility of an undetected failure that could

lead to inconsistency among all operating
processors though not among those actually
operating correctly.

Assumption 6: If event e at time T causes

processor p to send a message to processor g and
processor q fails to receive it by time T + T and
if both processors are otherwise operating
correctly, then both processors will detect the
failure by time T + 1

If we also assume that the backup processors for

the transmitter in Algorithm 1 are chosen in
advance, then Assumption 6 implies that an
otherwise correctly operating processor will

detect the situation resulting from its isolation
from the active processors and can halt further
distributed processing as in Assumption 2 until
it is and the
system,

"repaired" reintegrated with

Assumption 6 could be satisfied by some low level
acknowledgement protocol together with frequent
periodic checking of the links with messages in
both directions. We can weaken it somewhat by
asking that only the sender detect the failure;
but, in this case, we must require that any
single failure to send be sufficient to consider
the processor failed. An unfortunate consequence

of this requirement would be that a single
communication link failure could result in two
equivalent processor faults., Later we will
discuss relaxing the assumption in a different

way so that both ends of the link must discover
the failure but not within any fixed time. The
relaxed assumption could be satisfied by a simple
acknowledgement protocol together with
notification after repair.

Theorem 2: Algorithm 2 cunsures that all correct
processors either commit or abort the transaction
within a time bound of 5t and that if any correct
processor commits then all do, provided there is
at most one equivalent processor fault. Morecover,
if there are no faults and all processors are
ready to commit then the transaction will be
committed.

The proof of the theorem is straightforward from
Theorem 1 and the Assumptions 1 through 6.

So far we have not discussed recovery and
reintegration for failed processors. The details
of reintegration are beyond the scope of this
paper. Here we simply compare our ability in
principle to reintegrate with that of a typical
distributed commit. Our algorithms emphasize
speed of processing for the correct processors at
some expense to those that have failed. In the
usual two phase commit the log of the Transaction
Coordinator determines whether a transaction was
committed. Thus any reintegration of any failed
processor is dependent on the availability of
that log, but only that log need be consulted. In
our context there is no central repository for
the commit record. Instead a recovering processor
must consult the logs of at least t+l1 other
processors and it must have a consistent report

from t+1 of them before it can decide the status
of the transaction in question. If we assume in
the spirit of Assumption 2 that only the logs of
correct processors are available, then we can

relax this requirement and consistent with
Algorithm 2, we need ask only one correct
processor. However, in the next section we will

present an algorithm that is robust enough to
cope with significant relaxations of our
assumptions and when-the assumptions are relaxed
a consistent report from t+l processors will be
required.

5. BYZANTINE AGREEMENT
EQUIVALENT PROCESSOR FAULTS

SUSTAINING ANY T

We prescent now the extension of Algorithm 1 that
will be able to cope with any t faults. As in
Algorithm 1, we assume that the transmitter is
known. We continue the convention of Algorithm 1
that when a processor sends a message to others,
it also sends a copy to itself.

For simplicity of presentation we assume that the
communication network is complete so that except
for failures each processor can communicate with
each other within the time § . Otherwise we would
have to adjust the algorithm to include nondirect
communication and apply the methods of [Da] and
[Db] to effectively satisfy the assumption.

To run Algorithm 3, choose 2t+l processors to be
active (in the position of backup to the
transmitter s) and let all the rest be passive.

We present the algorithm again as rules of
correct operation for the various types of
processors.

963 BV 03

58

Algorithm 3

Transmitter: To send "GO" at time T the
transmitter sends
<GO, the time is T,s>,

to all active processors.

Active processors: If at time T' with T'-Tskr
active processor p receives the message
<GO, the time is T,s,pl,pz,

:Pk> >

from Pys and if p did not relay the message "GO"

before, then p sends to every processor the
message

<GO, the time is T,s,plypz,

)pk’p>'
All processors: ' If by time T', where

T'ST+(t+1)1, a processor has received messages of
the form

<GO, the time is T,s,pl,pz, ,pi>,
and the total number of different names appended
to them is at least t+1,
then decide that the event "GO" did indeed occur.
Let a be the number of active processors. If the
number of distinct signatures does not exceed t
but the sum of the number of distinct signatures
and the number of detected communication 1link
faults (on links adjacent to the processor)
exceeds a-t-1, then the processor must consider
itself failed.

Theorem 3: Following Algorithm 3 the
reaches Byzantine Agreement on the
provided no more than
faults occur.

system
event. "GO
t equivalent processor

Outline of proof:

The proof is an adaptation of the proof of
Theorem 6 of [DSb]. Let F be the set of failed
processors and let E be a set including F that
covers all link failures. Thus |E| £ t. Let
sig(p) be the number of distinct signatures
received by processor p; and let clf(p) be the
number of communication link failures adjacent to
p. It is straightforward to adapt the argument
from [DSb] to show that, if some p not in F has
sig(p)>t and if 'q dis mnot in F, then
sig(q)Zmin(t+l,a-t-clf(q)). But if sig(q)<t+l
and sig(q)+clf(q)>a~-t-1 then q is in F. Thus if
sig(p)>t then sig(q)>t. 0

Algorithm 3 can be simplified at the cost of an
increase in the number of messages so that all

processors are active. In this case again
communication with at least t+l1 correct
processors and ability to follow the algorithm

will allow a processor to reach agreement.

6. RELAXATION OF ASSUMPTIONS

A simpler algorithm directly generalizing
Algorithm 1 would have satisfied Theorem 3 under
Assumptions 1 through 6. However Algorithm 3 is
sufficiently robust that we can relax Assumptions
2 and 6 to allow undetected faults and still
reach Byzantine Agreement. In order to return an
incorrect processor to a state consistent with
the rest of the system, it is sufficient to
eventually identify the incorrect processor and
the time that it became incorrect. Thus with the
much weaker assumption that faults will
eventually be detected and that a checkpoint
prior to the occurrence of the fault can be
identified, we can provide the same protection of
consistency via transaction logs that is provided

by the distributed commit protocols that allow
indefinite waiting in the "prepared” state.
We have already remarked that existing

authentication protocols are available to satisfy
Assumption 3. Moreover, given Assumption 4 and a
bound on the rate of drift of clocks, periedic
application of Byzantine Agreement using
algorithms presented in {DSb] can satisfy both
Assumption 1 and Assumption 5. Thus we can relax
our set of assumptions to the eventual location
of the position and time of faults and bounds on
processing time, transmission time, and rate of
drift.

We leave for future research the elaboration of
algorithms for identification and correction of
faults including the reintegration of failed
processors, suggesting only that the key to such
algorithms lies in Byzantine Agreement.

ACKNOWLEDGEMENTS

The authors would like to thank Won Kim, John
McPherson, Mario Schkolnick, Robin Williams, and
the referees for many helpful comments on earlier
drafts of this manuscript.

REFERENCES

[DH] W. Diffie and M. Hellman, "New direction
in cryptography," IEEE Trans. on Inform.
1T-22,6(1976), 644-654,

[DLM] R. A. DeMillo, N. A. Lynch, and M.
Merritt, ‘Cryptographic Protocols,"
proceedings, the 14th ACM SIGACT
Symposium on Theory of Computing, May,
1982.

{Da] D. Dolev, "The Byzantine Generals Strike

Again," Journal of Algorithms, vol. 3,

no. 1, 1982.

963 1nM 03

v T RSP e e

{Db]

[DR]

[DSa}

[DSb}

[DSc]

[DFFLS]

{FFL]

(6]

[La]

{Lb]

[LM]

[LSP]

. [Li]

59

D. Dolev, "Unanimity in an Unknown and
Unreliable Environment," 22nd Annual
Symposium on Foundations of Computer
Science, pp. 159-168, 1981.

D. Dolev and R. Reischuk, "Bounds on
Information Exchange for Byzantine
Agreement,” Proceedings, ACM

SIGACT~-SIGOPS Symposium on Principles of

Distributed Cowputing, Ottawa, Aug.
1982.

D. Dolev and H. R. Strong, 'Polynomial
algorithms for multiple processor
agreement,"” proceedings, the 14th ACM

SIGACT Symposium on Theory of Computing,
May 1982.

D. Dolev and H. R. Strong, "Authenticated
Algorithms for Byzantine Agreement," IBM
Research Report RJ3416 (1982).

D. Dolev and H. R. Strong, "Requirements
for Agreement in a Distributed System,"
Proceedings, the Second International
Symposium on Distributed Data Bases,
Berlin, Sep. 1982.

D. Dolev, M. Fischer, R. Fowler, N.
Lynch, and R. Strong, "Efficient
Byzantine Agreement Without
Authentication," subbmitted for
publication.

M. Fischer, R. Fowler, and N. Lynch, "A
Simple and Efficient Byzantine Generals
Algorithm," this proceedings.

H. Garcia-Molina, "Elections in a
Distributed Computing System, " IEEE
Trans. on Computers, vol. C-31, no. 1,
1982.

L. Lamport, "The Weak Byzantine Generals

Problem," JACM, to appear.

L. Lamport, "Using Time Instead of Timeout

for Fault-Tolerant Distributed Systems,"
Technical Report, Computer Science
Laboratory, June 1981.

L. Lamport, and P. M. Melliar-Smith,
"Synchronizing Clocks in the Presence of
Faults," Technical Report, Computer
Science Laboratory, March 1982.

L. Lamport, R. Shostak, and M. Pease, "The
Byzantine Generals Problem," ACM Trans.
on Programing Languages and Systems, to
appear.

"Notes on
Research

B. G. Lindsay, et. al.,
distributed databases,” IBM
Report RJ2571 (1979).

Beown R

e

erore

[LF]

{PSL]

[RSL]

[Sa}

[sb]

[ss]

N. Lynch, and M. Fischer, "A Lower Bound
for the Time to Assure Interactive
Consistency," Information Processing
Letters, to appear.

M. Pease, R. Shostak, and L. Lamport,
"Reaching Agreement in the Presence of
Faults," JACM, vol. 27, no. 2, pp.
228-234, 1980.

D. J. Rosenkrantz, R. E. Stearns, and P.
M. Lewis, "System 1level concurrency
control for distributed database
systems," ACM Trans. on Database Systems
3:2 (1978), pp. 178-198.

D. Skeen, "A Quorum-based Commit
Protocol,” Proceedings, the 6th Berkeley
Workshop on Distributed Data Management
and Computer Networks, May 1982, pp.
69-80.

D. Skeen, "Nonblocking Commit Protocols,”
Proceedings, SIGMOD International
Conference on Management of Data, Ann
Arbor, Michigan, 1981, pp. 133-142.

D. Skeen and M. Stonebraker, "A Formal
Model of Crash Recovery in a Distributed
System," Proceedings, the 5th Berkeley
Workshop on Distributed Data Managment
and Computer Networks, May 1981, pp.
129-142.

Q6% IV 03

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

